Parcel Assembly

Devin Bissky Dziadyk, Stephan Heblich, James Macek April 23, 2024

Toronto in 1903

Toronto Right Now

1. Does parcel density reduce structural density?

- 1. Does parcel density reduce structural density?
 - Do these effects persist over a century?

- 1. Does parcel density reduce structural density?
 - Do these effects persist over a century?
 - Can it explain a lot of variation in the housing supply elasticity?
 e.g. Saiz (2010), Baum-Snow and Han (2023)

- 1. Does parcel density reduce structural density?
 - Do these effects persist over a century?
 - Can it explain a lot of variation in the housing supply elasticity?
 e.g. Saiz (2010), Baum-Snow and Han (2023)
- 2. How do land assembly issues interact with welfare-improving place-based policy?

- 1. Does parcel density reduce structural density?
 - Do these effects persist over a century?
 - Can it explain a lot of variation in the housing supply elasticity?
 e.g. Saiz (2010), Baum-Snow and Han (2023)
- 2. How do land assembly issues interact with welfare-improving place-based policy?
 - e.g. zoning reform, development subsidies

- 1. Does parcel density reduce structural density?
 - Do these effects persist over a century?
 - Can it explain a lot of variation in the housing supply elasticity?
 e.g. Saiz (2010), Baum-Snow and Han (2023)
- 2. How do land assembly issues interact with welfare-improving place-based policy?
 - e.g. zoning reform, development subsidies
 - Do they make these policies extremely sluggish?

- 1. Does parcel density reduce structural density?
 - Do these effects persist over a century?
 - Can it explain a lot of variation in the housing supply elasticity?
 e.g. Saiz (2010), Baum-Snow and Han (2023)
- 2. How do land assembly issues interact with welfare-improving place-based policy?
 - e.g. zoning reform, development subsidies
 - Do they make these policies extremely sluggish?
 - Heterogenous treatment effects in different locations?

- 1. Does parcel density reduce structural density?
 - Do these effects persist over a century?
 - Can it explain a lot of variation in the housing supply elasticity?
 e.g. Saiz (2010), Baum-Snow and Han (2023)
- 2. How do land assembly issues interact with welfare-improving place-based policy?
 - e.g. zoning reform, development subsidies
 - Do they make these policies extremely sluggish?
 - Heterogenous treatment effects in different locations?
- 3. What are the welfare effects of various policies that address hold-up?

- 1. Does parcel density reduce structural density?
 - Do these effects persist over a century?
 - Can it explain a lot of variation in the housing supply elasticity?
 e.g. Saiz (2010), Baum-Snow and Han (2023)
- 2. How do land assembly issues interact with welfare-improving place-based policy?
 - e.g. zoning reform, development subsidies
 - Do they make these policies extremely sluggish?
 - Heterogenous treatment effects in different locations?
- 3. What are the welfare effects of various policies that address hold-up?
 - e.g. subsidies to small landowners to disengage from offering high markups, eminent domain

- 1. Does parcel density reduce structural density?
 - Do these effects persist over a century?
 - Can it explain a lot of variation in the housing supply elasticity?
 e.g. Saiz (2010), Baum-Snow and Han (2023)
- 2. How do land assembly issues interact with welfare-improving place-based policy?
 - e.g. zoning reform, development subsidies
 - Do they make these policies extremely sluggish?
 - Heterogenous treatment effects in different locations?
- 3. What are the welfare effects of various policies that address hold-up?
 - e.g. subsidies to small landowners to disengage from offering high markups, eminent domain

1. Model of developers problem suggests that land assembly restricts redevelopment

- 1. Model of developers problem suggests that land assembly restricts redevelopment
 - Start with a component of the Strange (1995) model, embedded into a moncentric city framework

- 1. Model of developers problem suggests that land assembly restricts redevelopment
 - Start with a component of the Strange (1995) model, embedded into a moncentric city framework
 - Model will motivate identification strategy & heterogenous treatment effects

- 1. Model of developers problem suggests that land assembly restricts redevelopment
 - Start with a component of the Strange (1995) model, embedded into a moncentric city framework
 - Model will motivate identification strategy & heterogenous treatment effects
- 2. Estimate key parameters using historical parcel density in Toronto from 1924 present

- 1. Model of developers problem suggests that land assembly restricts redevelopment
 - Start with a component of the Strange (1995) model, embedded into a moncentric city framework
 - Model will motivate identification strategy & heterogenous treatment effects
- 2. Estimate key parameters using historical parcel density in Toronto from 1924 present
 - Use hyperlocal variation in parcel density and historical rental data to eliminate cofounders

- 1. Model of developers problem suggests that land assembly restricts redevelopment
 - Start with a component of the Strange (1995) model, embedded into a moncentric city framework
 - Model will motivate identification strategy & heterogenous treatment effects
- 2. Estimate key parameters using historical parcel density in Toronto from 1924 present
 - Use hyperlocal variation in parcel density and historical rental data to eliminate cofounders
- 3. Embed our estimates into a quantitative spatial model

- 1. Model of developers problem suggests that land assembly restricts redevelopment
 - Start with a component of the Strange (1995) model, embedded into a moncentric city framework
 - Model will motivate identification strategy & heterogenous treatment effects
- 2. Estimate key parameters using historical parcel density in Toronto from 1924 present
 - Use hyperlocal variation in parcel density and historical rental data to eliminate cofounders
- 3. Embed our estimates into a quantitative spatial model
 - Determine the effect on housing supply elasticity and overall welfare

- 1. Model of developers problem suggests that land assembly restricts redevelopment
 - Start with a component of the Strange (1995) model, embedded into a moncentric city framework
 - Model will motivate identification strategy & heterogenous treatment effects
- 2. Estimate key parameters using historical parcel density in Toronto from 1924 present
 - Use hyperlocal variation in parcel density and historical rental data to eliminate cofounders
- 3. Embed our estimates into a quantitative spatial model
 - Determine the effect on housing supply elasticity and overall welfare
 - Relate this to modern policies on lot divisions e.g. Accessory Dwelling Units

- 1. Model of developers problem suggests that land assembly restricts redevelopment
 - Start with a component of the Strange (1995) model, embedded into a moncentric city framework
 - Model will motivate identification strategy & heterogenous treatment effects
- 2. Estimate key parameters using historical parcel density in Toronto from 1924 present
 - Use hyperlocal variation in parcel density and historical rental data to eliminate cofounders
- 3. Embed our estimates into a quantitative spatial model
 - Determine the effect on housing supply elasticity and overall welfare
 - Relate this to modern policies on lot divisions e.g. Accessory Dwelling Units

Model

Key components of the model

- At each location x, there are N(x) parcels, each owned by one landlord indexed by i.
 - N(i,x) = share of land in x owned by i

Key components of the model

- At each location x, there are N(x) parcels, each owned by one landlord indexed by i.
 - N(i, x) = share of land in x owned by i
- \bullet Landlords have option to sell to developer whose productivity ν is private information
 - No mechanism for developers to signal productivity in a preceding stage; a key insight of Strange (1995)
 - Developers must assemble all parcels in x (Indivisibility)

Key components of the model

- At each location x, there are N(x) parcels, each owned by one landlord indexed by i.
 - N(i, x) =share of land in x owned by i
- ullet Landlords have option to sell to developer whose productivity u is private information
 - No mechanism for developers to signal productivity in a preceding stage; a key insight of Strange (1995)
 - Developers must assemble all parcels in x (Indivisibility)
- Each landowner offers price p(i,x) to maximize

$$\max_{p(i,x)} \underbrace{\left[1 - F[\nu^{*}(x)]\right]p(i,x)}_{\text{Sale successful}} + \underbrace{F[\nu^{*}(x)]r(x)\bar{h}(x)}_{\text{Returns if sale failed}} \tag{1}$$

where F is the distribution of developer productivity, ν^{\star} is the cutoff productivity

Developers

ullet If sale successful, developer of productivity u earns

$$\pi(x,\nu) = \nu \kappa(x) r(x)^{1+\epsilon} \tag{2}$$

and pays a price $p(x) = \sum_i N(i,x)p(i,x)$ to assemble all parcels. Therefore, cutoff productivity ν^* solves

$$\boldsymbol{p}(x) = \pi(x, \nu^*) = \nu^* \kappa(x) r(x)^{1+\epsilon}$$

• Developers accept all offers when $\nu \geq \nu^{\star}(x)$

Solution to game for a special distribution

• If $\nu\sim$ Weibull with CDF $F(\nu)=1-e^{-\sigma\lambda\nu^{\frac{1}{\sigma}}}$ then offered prices and cutoff productivity take a special form for empirical analysis

$$\boldsymbol{p}(x) = r(x)\bar{h}(x) + \kappa(x)r(x)^{1+\epsilon}\lambda^{-1}\nu^{\star}(x)^{\frac{\sigma-1}{\sigma}}N(x)$$
 (3)

$$\nu^{\star}(x) = r(x)^{-\epsilon} \kappa(x)^{-1} \bar{h}(x) + \lambda^{-1} \tilde{N}(x) \nu^{\star}(x)^{\frac{\sigma - 1}{\sigma}}$$
(4)

Solution to game for a special distribution

• If $\nu\sim$ Weibull with CDF $F(\nu)=1-e^{-\sigma\lambda\nu^{\frac{1}{\sigma}}}$ then offered prices and cutoff productivity take a special form for empirical analysis

$$\boldsymbol{p}(x) = r(x)\bar{h}(x) + \kappa(x)r(x)^{1+\epsilon}\lambda^{-1}\nu^{\star}(x)^{\frac{\sigma-1}{\sigma}}N(x)$$
 (3)

$$\nu^{\star}(x) = r(x)^{-\epsilon} \kappa(x)^{-1} \bar{h}(x) + \lambda^{-1} \tilde{N}(x) \nu^{\star}(x)^{\frac{\sigma - 1}{\sigma}}$$
(4)

• A special case when $\bar{h}=0$ (land is undeveloped) gets

$$\nu^{\star}(x) = \lambda^{-\sigma} N(x)^{\sigma} \tag{5}$$

$$\boldsymbol{p}(x) = \lambda^{-\sigma} N(x)^{\sigma} \kappa(x) r(x)^{1+\epsilon}$$
 (6)

 $\Longrightarrow \sigma$ is the elast. of N(x) to prices p(x), productivity $\nu^*(x)$ and semi-elast. of development probability!

Model conclusions

- Model elucidates two key empirical ideas:
 - 1. Rents r(x) and construction productivity $\kappa(x)$ are confounders to estimate σ
 - 2. Heterogeneous treatments effects: hold up more severe when rents are higher/construction costs are lower
- Idea: use hyperlocal variation in parcel density, eliminating these cofounders (across streets)
- ullet Get an estimate of σ from this regression using historical and modern parcel maps; allows us to directly answer research question

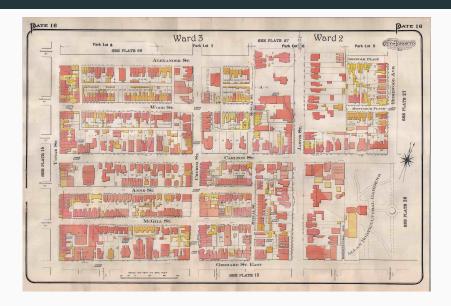
Data

Data

- Historical Toronto fire insurance maps (1818, 1858, 1880, 1889, 1903, 1913, 1924)
- Historical aerial imagery (1939, 1947, 1954, 1965, 1978)
- Rental rates by census tract (1961, 1971, 1981, 1991)
- Modern parcels, building footprints, and land use

Identifying buildings and parcels

 Key challenge is to identify which areas had higher parcel densities


Identifying buildings and parcels

- Key challenge is to identify which areas had higher parcel densities
- Do this using fire insurance maps, process via machine learning to identify buildings and parcels

Identifying buildings and parcels

- Key challenge is to identify which areas had higher parcel densities
- Do this using fire insurance maps, process via machine learning to identify buildings and parcels
- This is a work in progress

Toronto in 1923

Toronto in 1923

