Little School on the Prairie: A Push for Structural Transformation

Devin Bissky Dziadyk^a July 1, 2025

University of Toronto

 $[^]a$ Supported in part by funding from the Social Sciences and Humanities Research Council. All errors are my own.

- One room schools loom large in the American mythos and in the development of education systems around the world.
 - Common in the United States, Canada, United Kingdom, Australia, and Switzerland.
 - Formed an input for the US becoming a world leader in educating its population (Goldin & Katz, 2008).
 - Rural, ungraded, between ages of 5-14, teach children the 3R's: Reading, Writing, and Arithmetic.
- This project: What was the impact of one room schools on children and their communities?
 - What is the role of changing labor supply in structural transformation out of agriculture?

Research Question: What was the impact of one room schools?

- Rural one room schools were not known for high quality education:
 - Low educational quality, poor resources, difficulty recruiting teachers, and lower educational returns (Goldin & Katz, 2000; Lachanski, 2024).
- But early forms of education were important:
 - Decentralization allowed communities to custom tailor education (Dippel et al., 2020).
 - Widespread schooling raised intergenerational mobility, decreasing correlation with mother's human capital (Althoff et al., 2025).
 - Schooling as a push factor out of agriculture (Caselli & Coleman II, 2001; Porzio et al., 2022).

- Utilize the rollout of rural schools in the western Canadian prairies at the start of the 20th century.
 - Combine census records with the near universe of school openings from 1871-1912.
 - Geolocate schools and households to exact land parcel (unique feature to Canada).
- Distance to school is likely endogenous, could reflect a variety of factors.
- Plausibly exogenous timing of school construction relative to a child's age.
 - Counterfactual is having a school versus not.

School Example: MacDowall/Cecil School #130

School Example: MacDowall/Cecil School #130

School Example: MacDowall School #130

- Estimate a difference-in-differences finding that exposure to one room schools:
 - Decreases the likelihood of being a farmer 3.4pp (6%), increases incomes 12.3%, and increases distance from childhood home by 12.7%.
 - Increases likelihood of becoming teachers (1.1pp), managers (0.9pp), and agents (0.5pp), decreases likelihood of becoming retail clerks (-0.7pp).
 - Increases farm sizes by 4.8% in the areas of construction.
- Despite low returns to education from one room schools, they were an important institution to sort children to other occupations and encourage regional development. Two possible mechanisms:
 - 1. Higher returns to human capital outside of agriculture.
 - 2. One room schools reveal underlying ability in non-agricultural sectors.

Related Literature

- Early Education in United States & Canada: Goldin and Katz (1998), Goldin (1998), Goldin and Katz (2000), MacKinnon and Minns (2009), Dippel et al. (2020), Schaede (2021), Card et al. (2022a), Card et al. (2022b), Lachanski (2024) Althoff et al. (2025).
 - Contribution: Plausibly exogenous availability of schooling.
- Education & Structural Change: Caselli and Coleman II (2001), Porzio et al. (2022), Budi-Ors (2023), Gauthier et al. (2025).
 - Contribution: Causal evidence that education reallocates labour away from agriculture.
- Western Settlement and Development: Mattheis and Raz (2019), Smith (2022), Leonard and Kogelmann (2022), French (2022), Nagy (2023), Bagagli (2023).
 - Contribution: First to geolocate entire rural populations.
- Census Linking: Abramitzky et al. (2012), Antonie et al. (2014), Abramitzky et al. (2014), Feigenbaum (2016), Antonie et al. (2020), Abramitzky et al. (2020), Bailey et al. (2020), Price et al. (2021) Helgertz et al. (2022), Feigenbaum et al. (2023), Buckles et al. (2023), Abramitzky et al. (2024).
 - Contribution: First to link Canadian census in 20th century, including waves of prairie census.

Background & Data

Schools in the Prairies

- The early need for schools was filled by single one room schoolhouses which covered Alberta, Saskatchewan, and Manitoba.
- The rollout of these schools was not uniform and required a petition by the community to the provincial government. Details
 - Created a logistical problem in the 1910's as new schools were needed to literally fill in the gaps between existing schools.
- Schools would accommodate the local religion, with no difference in teacher certification by religion.
- Attendance by children was inconsistent.
 - "Parents who keep children out of school because of distance or danger, appear to have no hesitation in sending the boys to market" A. Kennedy, Inspector of Schools, 1910

- Historical Canadian Census: 1901, 1906 (Prairies), 1911, 1916 (Prairies), 1921, 1926 (Prairies), 1931.
 - Primary focus: 1906, 1911, and 1931.
- Historical school locations and founding dates from 1871 to 1912. Details
- Historical railroad line locations.
- FAO estimates for agricultural yields.
- Other Data

- The widespread use of the survey boundaries as addresses is unique to the Canadian prairies. Details
- In other projects (UK, US) it's typical to be able to locate 20-30% of rural households, and then only to the nearest town.
- This project: Geolocate 72% of rural households to the section number (1 mile square) in 1906 census, 84% in 1921, and 71% in 1931. Household Rates
- Schools are located in a similar fashion, with some geolocations being less precise.
 - I'm able to locate 91.8% of schools relative to the number listed as operating.
 School Counts

An Example Family

Family and Surrounding Township

13

Canadian Census Linking

- Need to link census observations in 1906 with later waves in 1911 and 1931.
 - Unlike the US there are no standard set of links available for these census waves.
- Implement the MLP method used at IPUMS to link US census records.
 - Use US training data, training on the set of features that can be recreated with the Canadian data.
 - Match 26% of children from 1906-1911, and 16% from 1906-1931.
 Rates
 Methodology
 - Lower than MLP results for the United States (46.3%), similar to ABE (26.5%)
 - Expected as the Canadian immigration is much higher at this time.

Bias From Linking - Makes Estimates More Conservative

- Earlier linking methods used on immutable characteristics.
- Newer methods like MLP and the newest ABE use mutable characteristics to differentiate observations that are otherwise observationally equivalent (Abramitzky et al., 2024).
 - John Smith in Ontario in 1911 is more likely to be in Ontario in 1921 than in Nova Scotia.
 - Get linking performance improvements for shorter distances MLP-ABE Distance
 - Bias works against effects on occupation changes and migration.
- More likely to match people who are younger

 men
 wealthier
 and native to Ontario or the United Kingdom

Motivating Facts

How does distance affect schooling?

- Distance is mentioned repeatedly as a barrier to school attendance, and as one of the arguments for one room schools.
 - School locations don't overlap with railways, towns, post offices, or other amenities.
 Map
- Link 1906 (have locations) with 1911 (have school attendance), restrict sample to households that didn't move.
- Estimate effect of distance on school attendance in 1km bins:

$$y_i = \sum_{k=1}^5 \beta_k \mathbb{1}\{d \in k_{1km}\} + X_i + p_i + \epsilon_i$$
(1)

• Include sex by age by birth order, birthplace, and enumeration subdistrict fixed effects, family economic and railway distance controls.

Schooling vs Distance

Ability to Read vs Distance

- Similar effects on both intensive and extensive margins Intensive Extensive.
- In regressions, find an elasticity of -0.039 between log months of school and log distance to school, and coefficient of -0.027 between likelihood of attending school and distance to school.
- Note that the effects dissipate to zero around 5km mark.
 - Policy was to make school districts no larger than 20 square miles, or $\approx 4km$ in radius.

Impact of School Construction on Later Life

Difference in Differences

- School location is likely endogenous with a variety of factors.
- Solution: Exploit the timing of schools, comparing children who had schools constructed nearby (treated) to those who didn't (control) in younger versus older cohorts as in Duflo (2001).
 - Difference: treatment is defined at the individual instead of region.
- School construction was rapid, with a new school district being established every day by 1905 Graph.
- Assumptions:
 - 1. Children do not benefit from school construction after a certain age.
 - 2. Parents cannot manipulate when the school is constructed relative to the age of their children.
- Link 1906 census (boys with school distances) to 1931 (adults).

Schooling vs Age (Raw Data)

Difference in Differences

- Comparison between those in the 0-5 cohort (t_c = 1{age₁₉₀₆ <= 5}) in 1906, and those who are 12-17 in 1906.
- Considered treated if the distance to school decreased by 5km or more between 1900 to 1905, and the final distance is within 10km $(s_i = \mathbb{1}\{\Delta dist_{i,1900,1905} > 5km | dist_{i,1905} < 10km\}).$
- Include geographic fixed effects α_d , probability of link p_i and weight by observations by p_i .

Dependent Variable:		Family in Ag			
Model:	(1)	(2)	(3)	(4)	(5)
School Constr. $ imes$ Cohort	-0.0409***	-0.0317**	-0.0331**	-0.0342**	-0.0346**
	(0.0151)	(0.0154)	(0.0154)	(0.0153)	(0.0153)
School Constr.	0.0112	0.0057	0.0060	0.0047	0.0049
Calcut	(0.0162)	(0.0164)	(0.0164)	(0.0165)	(0.0163)
Conort	(0.0394)	(0.0452)	(0.0020)	(0.0020)	(0.0018)
Log RR Distance (1906)	(0.0091)	(0.0095)	(0.0093)	(0.0092)	0.0210***
					(0.0045)
Link Prob.	0.4399***	0.4261***	0.4149***	0.4146***	0.4156** [*]
	(0.0245)	(0.0245)	(0.0244)	(0.0245)	(0.0244)
Enumeration Subdistrict (1906)	Yes	Yes	Yes	Yes	Yes
Fam. Bpl.		Yes	Yes	Yes	Yes
Homestead			Yes	Yes	Yes
Livestock			Yes	Yes	Yes
Ag. Productive.				Yes	Yes
Observations	14,944	14,944	14,944	14,944	14,944
R ²	0.07873	0.08514	0.09582	0.09796	0.09986
Dependent variable mean	0.69279	0.69279	0.69279	0.69279	0.69279

Clustered (Enumeration Subdistrict (1906)) standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Dependent Variable:			Log Income		
Model:	(1)	(2)	(3)	(4)	(5)
School Constr. \times Cohort	0.1012*	0.1108*	0.1160**	0.1213**	0.1226**
School Constr.	(0.0566) 0.0130 (0.0541)	(0.0581) 0.0083 (0.0552)	(0.0587) 0.0052 (0.0558)	(0.0590) 0.0058 (0.0540)	(0.0591) 0.0050 (0.0546)
Cohort	-0.3057***	-0.2693***	-0.2639***	-0.2594***	-0.2585***
Log RR Distance (1906)	(0.0276)	(0.0294)	(0.0306)	(0.0307)	(0.0308) -0.0318** (0.0123)
Link Prob.	-0.2310*** (0.0620)	-0.1887*** (0.0620)	-0.1915*** (0.0618)	-0.1966*** (0.0620)	-0.2018*** (0.0621)
Enumeration Subdistrict (1906) Fam. Bpl. Homestead Livestock Ag. Productive.	Yes	Yes Yes	Yes Yes Yes Yes	Yes Yes Yes Yes Yes	Yes Yes Yes Yes Yes
Observations R ² Dependent variable mean	5,750 0.15606 6.5231	5,750 0.16376 6.5231	5,750 0.16727 6.5231	5,750 0.17174 6.5231	5,750 0.17288 6.5231

Clustered (Enumeration Subdistrict (1906)) standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

► Event Study

- Treated cohorts are also likely to live further away from home 🗩.
- Some evidence that they are more likely to be employees
- These results hold while varying the treatment cutoff

 how treatment is defined
 how the cohorts used comparison
- Results are concentrated in those that are furthest from the railway. Robust
- If people are migrating out of agriculture, what are they doing?

Changes in Occupations

- Can use occupation codes to determine what types of occupations people are switching into.
- Start by looking at four primary industries: Agriculture, Manufacturing, Services, and General Labour.
- Then further divide into 2 digit OCCHISCO codes.

Primary Industries: Bypassing Manufacturing

28

Switching to High Skill Services ••

But in Different Industries than Urbanites

Agents who grew up in Rural Areas

Industry	n
Unknown	131
Grain Elevator	56
Insurance	47
General	12
Real Estate	9
Steam Railway	9
General Farm	6
Lumber Mill	5
Retail Hardware	5
Steam Railroad	5
Other	28

Agents who grew up in Urban Areas

Industry	n
Unknown	97
Insurance	29
Real Estate	10
Grain Elevator	7
Steam Railway	5
Mill Farm	4
Wholesale Grocery	3
Financial	2
Automobile	1
Barber Shop	1
Other	15

Land Consolidation
- If people are leaving agriculture and farms are primarily owner operated, then we would expect farm sizes to increase.
- Don't observe farm sizes directly, only the location of the farm.
- Can infer farm sizes by looking at the density of neighbors.
 - A farmer with fewer neighbors is likely to have a larger farm.
- Imperfect measure with a lot of noise.
 - $\bullet\,$ Validate by looking at correlations with other farm characteristics and persistence in

Population Change from 1921 to 1931

Change in Log Population 1921 to 1931

	5.0
ł	2.5
	0.0
	-2.5

Railroad Network (1931)

Land Consolidation - Triple Differences

- Can't use linked census waves because cohort timing doesn't apply to land.
- Instead, look at the entire set of farms observable in 1906, 1921, and 1931, and use the set of schools open in 1912, with opening dates between 1895 and 1912.
- Define a close school if it was constructed within 5km of the parcel (p_i = 1{dist_i < 5km}).
- Define early school construction as areas that got a school before 1906 (s_j = 1{date_j < 1906}).
- Use 1906 as the reference period for 1921 and 1931 (T_t).
- Include school fixed effects α_j

$$y_{ijt} = \beta p_i s_j T_t + \text{Interactions}_{i,j,t} + \alpha_j + \epsilon_{i,j,t}$$
(3)

Dependent Variable:			Ln Farm A	rea	
Model	(1)	(2)	(3)	(4)	(5)
$Early \times Close \times Year = 1931$	0.0612*	0.0415	0.0453*	0.0477*	0.0484*
$Early \times Close \times Year = 1921$	(0.0325) 0.0223 (0.0312)	(0.0260) 0.0104 (0.0258)	(0.0258) 0.0117 (0.0256)	(0.0260) 0.0104 (0.0257)	(0.0260) 0.0106 (0.0257)
Early $ imes$ Close	-0.0446*	-0.0298	-0.0343	-0.0342	-0.0340
Homestead	(0.0265)	(0.0220)	(0.0219) -0.2121***	(0.0221) -0.2135***	(0.0221) -0.2135***
RR Dist in Year			(0.0050)	(0.0050) 0.0407*** (0.0025)	(0.0050) 0.0407***
Family Size				(0.0035)	-0.0006
Fam. Adult Males					(0.0005) 0.0045*** (0.0016)
Other Terms	Yes	Yes	Yes	Yes	`Yes ´
School District		Yes	Yes	Yes	Yes
$\begin{array}{c} \text{Observations} \\ \text{R}^2 \end{array}$	439,027 0.00614	439,027 0.13406	439,027 0.15113	439,027 0.15336	439,027 0.15384

Clustered (Enum. Sub.) standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

- This result is robust to changing the cutoff boundary and early versus late year selection. Boundary Year
- Importantly find the same result if looking only at farms in 1921 and 1931, after the majority of settlement occurs.
 - Possible concern is that 1906 is in the middle of the settlement period so could be picking up general geographic expansion.

Conclusion

- This project has focused on the role that one room schools play in the development of rural areas.
- Exposure to these schools lead to agricultural outmigration, and switching towards high skill services.
- This encouraged the consolidation of land into larger farms.
- Want to think about mechanisms next. Two possibilities:
 - 1. Higher returns to human capital outside of agriculture.
 - 2. One room schools reveal underlying ability in non-agricultural sectors.

Thank you!

- Establishing a school district required petitioning the provincial government and a ratepayer vote.
 - Sometimes, votes would fail due to fear of higher taxes.
- If a school district was formed, the location of the school would be located in the middle of the district. Example
 - Some minor exceptions if land could not be acquired.
 - Settlers could not to anticipate the location of the school when settling.
- Distance was a key concern for school attendance.
 - Students were exempt from mandatory schooling in Alberta (1910) if they lived further than 2 miles from the nearest school.
 - Same in Saskatchewan after 1917, with a distance of 2.5 miles.

School Board Layout Back

- "The attendance in rural districts is not so regular as one would expect or could hope for. Undoubtably, it is in part due to the scarcity of farm help and the long distances some children have to go; but I fear it is also caused by a lack of interest on the part of many parents", H.H. Smith, Inspector of Schools, Saskatoon, December 31, 1909
- "When a boy is old enough to work an outfit on a farm, his school days are over", John S. Huff, Davidson, Saskatchewan., March 1st, 1912

Historical School Locations • Back to Data

- Panel of school openings from 1871 to 1912 covering Alberta, Saskatchewan and Manitoba.
- Merge four independent sources of data for schools in the prairies:
 - Alberta: Glenbow Museum Archives
 - Saskatchewan: One Room School Project, Annual reports of the Department of Education
 - Manitoba: Manitoba Historical Society
- Saskatchewan data doesn't include the opening date for each school, but can infer date using Alberta school opening dates.
 - Alberta and Saskatchewan were both part of the Northwest Territories until 1905, so share a school numbering system until that time.

Schools 1890

Schools 1900 • Back to Data

Schools 1910 • Back to Data

- Cummins Maps. Example
 - Alberta, Saskatchewan, and Manitoba property ownership maps (approximately 1915 1930).
 - Some have been digitized, currently negotiating to get labelled versions for Manitoba and Saskatchewan.
- Land Grants of Western Canada, 1870-1930, CPR Land Sales Records, Hudsons Bay Company Land Records.
- Massey-Harris dealer records.

Table 1: Geolocation rates by census year for Alberta, Saskatchewan, and Manitoba. Exact geolocations are at the section level or in CSDs that are less than 1.5 miles in area. General geolocations are those that are at the township level or finer. CSD geolocations are at the CSD level. Splitting the geolocation rate by urban and rural households reveals that the majority of geolocations in both census waves are for the rural households.

	Total	Exact	General	CSD	Exact (Rural)	Exact (Urban)
1906	100.00	55.57	84.41	100.00	71.94	0.00
1921	100.00	65.97	69.61	100.00	83.89	36.35
1931	100.00	42.76	86.57	100.00	70.81	0.00

Table 2: Summary statistics by province for the number of schools in 1911. The first row lists the number of schools reports in the 1911 report from the department of education for Alberta (Government of Alberta, 1912), Saskatchewan (Saskatchewan Department of Education, 1906, 1907, 1908, 1910, 1911, 1912, 1914), and Manitoba (Government of Manitoba, 1911, 1912). This figure includes both public and separate schools in Alberta and Saskatchewan while the data contain only public schools, so is a slight overestimate. The second row, "Observed" lists the number of schools I find in the data in 1911, which requires that they have an opening date before 1911. Any schools with an unknown opening date are dropped. "Geolocated" reports the number of schools, of those which are observed, which I am able to geolocate. "Geolocated (Section)" reports the number of schools where the geolocation is at the section level (1 mile square) or finer.

Туре	Total	Alberta	Saskatchewan	Manitoba
Actual	5955	1784	2573	1598
Observed	5618	1750	2370	1498
Geolocated	5472	1750	2227	1495
Geolocated (Section)	4141	1619	1027	1495

Link Probability MLP 1906-1921 Back to Linking

MLP Match Probability

Distance from 1906-1911 by Linking Method Back to Linking

	Total	Matched	Children	Adults	Male	Female
1906-1911	100.00	22.80	26.69	21.43	26.75	17.76
1906-1921	100.00	19.73	20.59	20.12	25.62	12.02
1906-1931	100.00	16.20	16.27	16.91	23.02	7.18
1911-1921	100.00	19.95	23.06	18.25	24.69	14.67
1911-1931	100.00	13.37	13.92	13.19	18.86	7.21

- MLP works in two stages:
 - 1. Generate all possible matches between two years. Use logit/machine learning to score matches. Take matches above a minimum threshold, and above a threshold for the next best match.
 - 2. Use these matches to identify families, then do a second stage of matching within families.
- Currently using the training data from the MLP replication package to train a model for the Canadian data.

	Total	Matched	Children	Adults	Male	Female
1906-1911	802940	183049	80170	102879	122854	60112
1906-1921	802940	158416	61840	96576	117681	40694
1906-1931	802940	130060	48864	81196	105740	24303
1911-1921	7197003	1436085	638288	797797	940674	495213
1911-1931	7197003	961982	385183	576799	718432	243467

	Canada	AB	SK	MB	ON	QC
1906-1911	22.80	22.95	21.36	23.75		
1906-1921	19.73	18.98	19.17	20.51		
1906-1931	16.20	16.01	16.05	16.40		
1911-1921	19.95	18.22	18.41	19.92	21.21	18.19
1911-1931	13.37	14.40	14.28	14.74	13.60	12.21

Match Rate by Age Back to Linking Bias

Dependent Variable:			Matche	ed	
Model:	(1)	(2)	(3)	(4)	(5)
	1906-1911	1906-1921	1906-1931	1911-1921	1911-1931
Age = 1	0.0730***	0.0786***	0.0673***	0.0686***	0.0367***
Age = 2	0.0074*	0.0155***	0.0583***	-0.0178***	0.0132***
Age = 3	-0.0355***	0.0100***	0.0521***	-0.0302***	0.0088***
Age = 4	-0.0083**	0.0209***	0.0443***	0.0052***	0.0201***
Age = 6	-0.0268***	-0.0569***	-0.0872***	-0.0325***	-0.0582***
Age = 7	-0.0458***	-0.1299***	-0.1473***	-0.0806***	-0.1143***
Age = 8	-0.0642***	-0.1663***	-0.1502***	-0.1197***	-0.1272***
Age = 9	-0.1267***	-0.1751***	-0.1359***	-0.1434***	-0.1211***
Age = 10	-0.1999***	-0.1869***	-0.1474***	-0.1499***	-0.1134***
Age = 11				-0.1073***	-0.0706***
Age = 12				-0.1558***	-0.1033***
Sex	0.1307***	0.1465***	0.1467***	0.1197***	0.1084***
Family Size	0.0041***	0.0010***	0.0001	$-5.8 imes10^{-5}$	$-7.95 imes 10^{-5***}$
Birthplace	Yes	Yes	Yes	Yes	Yes
Relation	Yes	Yes	Yes	Yes	Yes
Enum. Subdist.	Yes	Yes	Yes	Yes	Yes
Homestead	Yes	Yes	Yes		
Milk Cows	Yes	Yes	Yes		
Horses	Yes	Yes	Yes		
Wheat Prod.	Yes	Yes	Yes		
Religion				Yes	Yes

Dependent Variable:			Match	ed	
Model:	(1)	(2)	(3)	(4)	(5)
	1906-1911	1906-1921	1906-1931	1911-1921	1911-1931
Family Size	0.0043***	0.0013***	0.0004	-4.14×10^{-5}	$-6.45 \times 10^{-5***}$
Relation = Boarder	-0.1487***	-0.1326***	-0.1166***	-0.1034***	-0.0951***
Relation = Daughter	-0.1340***	-0.2163***	-0.2192***	-0.1301***	-0.1627***
Relation = Lodger	-0.1398***	-0.1533***	-0.1187***	-0.1049***	-0.0944***
Relation = Other	-0.1284***	-0.1156***	-0.0941***	-0.0972***	-0.0842***
Relation = Sister	-0.1942***	-0.2063***	-0.1794***	-0.1756***	-0.1637***
Relation = Son	0.0110***	0.0118***	0.0425***	0.0319***	0.0435***
Relation = Wife	-0.0379***	-0.0605***	-0.0819***	-0.0285***	-0.0458***
Age	Yes	Yes	Yes	Yes	Yes
Birthplace	Yes	Yes	Yes	Yes	Yes
Enum. Subdist.	Yes	Yes	Yes	Yes	Yes
Homestead	Yes	Yes	Yes		
Milk Cows	Yes	Yes	Yes		
Horses	Yes	Yes	Yes		
Wheat Prod.	Yes	Yes	Yes		
Religion				Yes	Yes
Observations	430,101	430,101	430,101	1,191,247	1,191,247
R ²	0.08044	0.08238	0.09728	0.05538	0.06190

Clustered (Enum. Subdist.) standard-errors in parentheses

Match Rate by Livestock Back to Linking Bias

Dependent Variable: Model:	(1) 1906-1911	Matched (2) 1906-1921	(3) 1906-1931
Sex Family Size Milk Cows = 1-4 Milk Cows = 5-9 Milk Cows = 10-49 Milk Cows = 50+ Horses = 1-4 Horses = 5-9 Horses = 10-49 Horses = 50+	0.1313^{***} 0.0041^{***} 0.0266^{***} 0.0537^{***} 0.0618^{***} 0.0173 0.0311^{***} 0.0547^{***} 0.0634^{***}	0.1467*** 0.0011*** 0.0266*** 0.0475*** 0.0495*** 0.0080 0.0280*** 0.0299*** 0.0559*** 0.0231*	$\begin{array}{c} 0.1466^{***} \\ 9.13 \times 10^{-5} \\ 0.0199^{***} \\ 0.0372^{***} \\ 0.0403^{***} \\ -0.0086 \\ 0.0205^{***} \\ 0.0385^{***} \\ 0.0436^{***} \\ 0.0205^{**} \end{array}$
Age	Yes	Yes	Yes
Birthplace	Yes	Yes	Yes
Relation	Yes	Yes	Yes
Province	Yes	Yes	Yes
Homestead	Yes	Yes	Yes
Wheat Prod.	Yes	Yes	Yes
Observations R^2	430,101	430,101	430,101
	0.05674	0.06955	0.08882

Clustered (Enum. Subdist.) standard-errors in parentheses

Dependent Variable:		Matched	
Model:	(1)	(2)	(3)
	1906-1911	1906-1921	1906-1931
Sex	0.1313***	0.1467***	0.1466***
Family Size	0.0041***	0.0011***	$9.13 imes10^{-5}$
Homestead = HBC	0.0059	-0.0019	-0.0015
Homestead = Railway	0.0004	0.0018	0.0012
Homestead = School	0.0079	-0.0006	0.0009
Age	Yes	Yes	Yes
Birthplace	Yes	Yes	Yes
Relation	Yes	Yes	Yes
Province	Yes	Yes	Yes
Milk Cows	Yes	Yes	Yes
Horses	Yes	Yes	Yes
Wheat Prod.	Yes	Yes	Yes
Observations	430,101	430,101	430,101
R ²	0.05674	0.06955	0.08882

Clustered (Enum. Subdist.) standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Match Rate by Province Back to Linking Bias

Dependent Variable: Model:	(1) 1906-1911	(2) 1906-1921	Matched (3) 1906-1931	(4) 1911-1921	(5) 1911-1931
Sex	0.1313***	0.1467***	$\begin{array}{c} 0.1466^{***}\\ 9.13\times 10^{-5}\\ -0.0044\\ -0.0072\end{array}$	0.1196***	0.1083***
Family Size	0.0041***	0.0011***		-0.0001***	-0.0001***
Province = AB	0.0034	-0.0093		-0.0145***	-0.0003
Province = SK	-0.0114	-0.0077		-0.0099**	-0.0011
Age Birthplace Relation Homestead Milk Cows Horses Wheat Prod. Religion	Yes Yes Yes Yes Yes Yes	Yes Yes Yes Yes Yes Yes	Yes Yes Yes Yes Yes Yes Yes	Yes Yes Yes Yes	Yes Yes Yes Yes
Observations R^2	430,101	430,101	430,101	1,191,247	1,191,247
	0.05674	0.06955	0.08882	0.04816	0.05726

Clustered (Enum. Subdist.) standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Dependent Variable:	Matched				
Model:	(1)	(2)	(3)	(4)	(5)
	1906-1911	1906-1921	1906-1931	1911-1921	1911-1931
Sex	0.1307***	0.1465***	0.1467***	0.1197***	0.1084***
Family Size	0.0041***	0.0010***	0.0001	$-5.8 imes10^{-5}$	$-7.95 imes 10^{-5***}$
Birthplace = UnitedStates	-0.0347***	-0.0533***	-0.0462***	-0.0260***	-0.0283***
Birthplace = Canada+BC	-0.0491***	-0.0425***	-0.0391***	-0.0131***	-0.0101***
Birthplace = MB	-0.0378***	-0.0389***	-0.0417***	0.0113***	0.0062***
Birthplace = Maritimes	-0.0322***	-0.0213***	-0.0155**	-0.0111***	-0.0132***
Birthplace = QC	-0.0563***	-0.0268***	-0.0199***	0.0067	0.0032
Birthplace = Caribbean	-0.1479***	-0.0886***	-0.1132***	-0.0441**	-0.0571***
Birthplace = Nordic	-0.0760***	-0.0547***	-0.0334***	-0.0327***	-0.0133***
Birthplace = UnitedKingdom	0.0319***	0.0322***	0.0358***	0.0003	0.0090***
Birthplace = Ireland	-0.0157*	-0.0178**	-0.0030	-0.0009	0.0065*
Birthplace = RestofEurope	-0.1094***	-0.0683***	-0.0469***	-0.0306***	-0.0115***
Birthplace = ROW	-0.0722***	-0.1175***	-0.0977***	-0.0556***	-0.0498***
Age	Yes	Yes	Yes	Yes	Yes
Relation	Yes	Yes	Yes	Yes	Yes
Enum. Subdist.	Yes	Yes	Yes	Yes	Yes
Homestead	Yes	Yes	Yes		
Milk Cows	Yes	Yes	Yes		
Horses	Yes	Yes	Yes		
Wheat Prod.	Yes	Yes	Yes		
Religion				Yes	Yes

Cummins Map Example Back to Data Back to Schooling Choice

- We can geolocate households throughout the prairies because of how land was surveyed.
- Canadian prairies were surveyed in a grid, with 6 mile by 6 mile Townships, and 1 mile by 1 mile sections.
- In census records, administrative documents, and colloquial use, addresses were expressed using the survey boundaries of land.
 - These correspond to the modern day land divisions, allowing for precise geolocations.

Townships • Back to Geolocations

Enumerator Paths (Raw)
Back to Geolocations

Raw Path - District 21, Subdistrict 7, 1906

Enumerator Paths (Cleaned) Back to Geolocations

Schooling vs Distance: Intensive Margin • Back

Schooling vs Distance: Extensive Margin • Back

Annual School Openings Back to DiD

Dependent Variable:	Farm Work				
Model:	(1)	(2)	(3)	(4)	(5)
School Constr. $ imes$ Cohort	-0.0405**	-0.0304*	-0.0318*	-0.0322*	-0.0326*
Saha al Canatu	(0.0167)	(0.0169)	(0.0169)	(0.0169)	(0.0169)
School Constr.	(0.0108)	(0.0047)	(0.0055)	(0.0040)	(0.0042)
Cohort	-0.0191**	-0.0115	0.0085	0.0084	0.0076
	(0.0092)	(0.0097)	(0.0098)	(0.0098)	(0.0098)
Log RR Distance (1906)					0.0205^{***}
Link Prob.	0.4780***	0.4656***	0.4533***	0.4539***	0.4549***
	(0.0247)	(0.0251)	(0.0248)	(0.0249)	(0.0249)
Enumeration Subdistrict (1906)	Yes	Yes	Yes	Yes	Yes
Fam. Bpl.		Yes	Yes	Yes	Yes
Homestead			Yes	Yes	Yes
Livestock Ag Productive			Yes	Yes Ves	Yes
Ag. 110ductive.				165	165
Observations	14,944	14,944	14,944	14,944	14,944
R ²	0.07941	0.08531	0.09614	0.09733	0.09893
Dependent variable mean	0.62018	0.62018	0.62018	0.62018	0.62018

Family in Agriculture Event Study • Back

Income Event Study Back

Dependent Variables:	Migration Dist. (km)	Asinh Migration. Dist. (2)	Log Migration Dist.	On Family Farm
Model:	(1)		(3)	(4)
School Constr. \times Cohort	28.62***	0.1542*	0.1268*	-0.0129
School Constr.	-2.942	-0.0327	-0.0290	0.0004
Cohort	(8.529)	(0.0789)	(0.0712)	(0.0157)
	-4.966	-0.1574***	0.0155	0.0385^{***}
Log RR Distance (1906)	(6.259)	(0.0500)	(0.0447)	(0.0095)
	-3.407	-0.0244	-0.0044	0.0108^{***}
Link Prob.	(2.448)	(0.0227)	(0.0197)	(0.0038)
	-971.6***	-5.512***	-4.698***	0.5013***
	(27.55)	(0.1231)	(0.1039)	(0.0188)
Enumeration Subdistrict (1906)	Yes	Yes	Yes	Yes
Fam. Bpl. + Homestead	Yes	Yes	Yes	Yes
Livestock + Ag.	Yes	Yes	Yes	Yes
Observations	14,944	14,944	13,217	14,944
R ²	0.28142	0.22182	0.24087	0.12132
Dependent variable mean	224.04	4.2159	4.0652	0.23367

Dependent Variable:			Employee		
Model:	(1)	(2)	(3)	(4)	(5)
School Constr. $ imes$ Cohort	0.0176	0.0103	0.0115	0.0120	0.0124
School Constr	(0.0179)	(0.0179)	(0.0178)	(0.0178)	(0.0177)
School constr.	(0.0155)	(0.0113)	(0.0050)	(0.0155)	(0.0123)
Cohort	0.0970***	0.0878****	0.0710***	0.0711***	0.0717***
Log RR Distance (1906)	(0.0101)	(0.0108)	(0.0108)	(0.0108)	(0.0108) -0.0181*** (0.0045)
Link Prob.	-0.3419*** (0.0219)	-0.3348*** (0.0221)	-0.3247*** (0.0220)	-0.3260*** (0.0221)	-0.3269*** (0.0221)
Enumeration Subdistrict (1906)	Yes	Yes	Yes	Yes	Yes
Fam. Bpl.		Yes	Yes	Yes	Yes
Homestead			Yes	Yes	Yes
Ag. Productive.			Tes	Yes	Yes
Observations	14,944	14,944	14,944	14,944	14,944
R ²	0.07386	0.07982	0.08833	0.09050	0.09181
Dependent variable mean	0.34475	0.34475	0.34475	0.34475	0.34475

Dependent Variable:			Employer		
Model:	(1)	(2)	(3)	(4)	(5)
School Constr. $ imes$ Cohort	-0.0035	-0.0026	-0.0021	-0.0028	-0.0028
	(0.0155)	(0.0156)	(0.0157)	(0.0156)	(0.0156)
School Constr.	(0.0118)	(0.0102)	(0.0117)	(0.0108)	(0.0108)
Cohort	-0.0802***	-0.0815***	-0.0697***	-0.0694***	-0.0695***
	(0.0066)	(0.0072)	(0.0073)	(0.0073)	(0.0073)
Log RR Distance (1906)					0.0016
Link Prob.	0.1212***	0.1207***	0.1130***	0.1143***	(0.0034) 0.1144^{***}
	(0.0164)	(0.0167)	(0.0165)	(0.0165)	(0.0165)
Enumeration Subdistrict (1906)	Yes	Yes	Yes	Yes	Yes
Fam. Bpl.		Yes	Yes	Yes	Yes
Homestead			Yes	Yes	Yes
Ag. Productive.			res	Yes	Yes
Observations	14 044	14 044	14 044	14 044	14.044
R^2	0 07100	0 07377	0 07988	0.08248	0.08249
Dependent variable mean	0.13597	0.13597	0.13597	0.13597	0.13597

Dependent Variable:	Own Account				
Model:	(1)	(2)	(3)	(4)	(5)
School Constr. $ imes$ Cohort	-0.0065	0.0054	0.0053	0.0063	0.0061
	(0.0194)	(0.0198)	(0.0199)	(0.0199)	(0.0199)
School Constr.	-0.0166	-0.0280*	-0.0283*	-0.0292*	-0.0291*
Cohort	(0.0166)	(0.0105)	(0.0100)	(0.0107)	(0.0100)
	(0.0091)	(0.0098)	(0.0100)	(0.0100)	(0.0099)
Log RR Distance (1906)		· /	· /		0.0120***
	0 1 0 - 0 + + + +			0 1 0 - 0 * * * *	(0.0045)
Link Prob.	0.1872^{***}	0.1922^{***}	0.1876^{+++}	0.1879^{***}	0.1885^{***}
	(0.0222)	(0.0221)	(0.0221)	(0.0222)	(0.0222)
Enumeration Subdistrict (1906)	Yes	Yes	Yes	Yes	Yes
Fam. Bpl.		Yes	Yes	Yes	Yes
Homestead			Yes	Yes	Yes
Ag Productive			res	Yes	Yes
				105	105
Observations	14,292	14,292	14,292	14,292	14,292
R ²	0.09792	0.11031	0.11388	0.11487	0.11541
Dependent variable mean	0.35502	0.35502	0.35502	0.35502	0.35502

Dependent Variable:			Log Income		
Model:	(1)	(2)	(3)	(4)	(5)
	3km	4km	5km	6km	7km
School Constr. $ imes$ Cohort	0.1010*	0.0815	0.1226**	0.1299**	0.1316**
	(0.0592)	(0.0560)	(0.0591)	(0.0587)	(0.0632)
School Constr.	0.0134	0.0346	0.0050	-0.0259	-0.0106
	(0.0498)	(0.0517)	(0.0546)	(0.0560)	(0.0588)
Cohort	-0.2508***	-0.2490***	-0.2585***	-0.2603***	-0.2590* ^{**}
	(0.0305)	(0.0312)	(0.0308)	(0.0307)	(0.0308)
Log RR Distance (1906)	-Ò.0314*´*	-0.0315***	-0.0318**	-0.0320***	-0.0323* ^{**}
	(0.0123)	(0.0123)	(0.0123)	(0.0123)	(0.0124)
Link Prob.	-0.2032***	-0.2024***	-0.2018***	-0.2023***	-0.2022***
	(0.0621)	(0.0621)	(0.0621)	(0.0621)	(0.0621)
Enumeration Subdistrict (1906)	Yes	Yes	Yes	Yes	Yes
Fam. Bpl. + Homestead	Yes	Yes	Yes	Yes	Yes
Livestock + Ag.	Yes	Yes	Yes	Yes	Yes
Observations	5,750	5,750	5,750	5,750	5,750
R ²	0.17262	0.17262	0.17288	0.17257	0.17269
Dependent variable mean	6.5231	6.5231	6.5231	6.5231	6.5231

Dependent Variable:		Log li	ncome	
Model:	(1)	(2)	(3)	(4)
	Baseline	Vs Close	Vs Far	Vs Urban
School Constr. $ imes$ Cohort	0.1226**	0.1725**	0.0988	0.1490**
	(0.0591)	(0.0720)	(0.0706)	(0.0624)
School Constr.	0.0050	-0.0245	0.0388	-0.4199***
	(0.0546)	(0.0682)	(0.0553)	(0.0582)
Cohort	-0.2585***	-0.3148***	-0.2112***	-0.3872***
	(0.0308)	(0.0396)	(0.0543)	(0.0336)
Log RR Distance (1906)	-0.0318**	-0.0482***	-0.0216	
	(0.0123)	(0.0167)	(0.0196)	
Link Prob.	-0.2018***	-0.1819**	-0.1329	0.2660***
	(0.0621)	(0.0759)	(0.0876)	(0.0674)
Enumeration Subdistrict (1906)	Yes	Yes	Yes	
Birthplace	Yes	Yes	Yes	Yes
Father Birthplace	Yes	Yes	Yes	Yes
Mother Birthplace	Yes	Yes	Yes	Yes
Homestead	Yes	Yes	Yes	
Enumeration District (1906)				Yes
Fam. Bpl. + Homestead	Yes	Yes	Yes	partial
Livestock + Ag.	Yes	Yes	Yes	
Observations	5,750	3,857	3,095	3,986
R ²	0.17288	0.19322	0.23183	0.12405
Dependent variable mean	6.5231	6.5445	6.5006	6.8325

Chartened (Francestics, Caldistrict (1006)) standard smars in a second

Dependent Variable:	Log Income					
Model:	(1)	(2)	(3)	(4)	(5)	(6)
	0-5 vs 6-11	0-5 vs 12-17	0-5 vs 18-23	6-11 vs 12-17	6-11 vs 18-23	12-17 vs 18-23
Variables						
School Constr. $ imes$ Cohort	0.0468	0.1226**	0.1831***	0.1101*	0.0947*	0.0663
	(0.0528)	(0.0591)	(0.0529)	(0.0618)	(0.0551)	(0.0627)
School Constr.	-0.0258	0.0050	-0.1015**	-0.0711	-0.1556***	-0.0158
	(0.0488)	(0.0546)	(0.0505)	(0.0577)	(0.0537)	(0.0555)
Cohort	-0.1857***	-0.2585***	-0.2225***	-0.0921***	-0.0480	0.0187
	(0.0273)	(0.0308)	(0.0338)	(0.0292)	(0.0313)	(0.0314)
Log RR Distance (1906)	-0.0251**	-0.0318**	-0.0177	-0.0332***	-0.0275**	-0.0372***
	(0.0120)	(0.0123)	(0.0125)	(0.0116)	(0.0118)	(0.0132)
Link Prob.	-0.1089*	-0.2018***	-0.1134*	-0.2240***	-0.1455**	-0.2348***
	(0.0632)	(0.0621)	(0.0627)	(0.0667)	(0.0641)	(0.0666)
Fixed-effects						
Enumeration Subdistrict (1906)	Yes	Yes	Yes	Yes	Yes	Yes
Fam. Bpl. + Homestead	Yes	Yes	Yes	Yes	Yes	Yes
Livestock + Ag.	Yes	Yes	Yes	Yes	Yes	Yes
Fit statistics						
Observations	6,223	5,750	6,091	5,253	5,594	5,121
R ²	0.15385	0.17288	0.17415	0.16089	0.15167	0.15958
Dependent variable mean	6.4950	6.5231	6.5400	6.6499	6.6607	6.7075

Dependent Variable:		Family in Ag					
Model:	(1)	(2)	(3)				
	Full Sample	Within 5km of Railway	Beyond 5km of Railway				
School Constr. $ imes$ Cohort	-0.0342**	0.0108	-0.0503***				
	(0.0153)	(0.0367)	(0.0191)				
School Constr.	0.0047	0.0165	0.0047				
	(0.0165)	(0.0406)	(0.0185)				
Cohort	0.0626****	0.0537***	0.0684****				
	(0.0092)	(0.0138)	(0.0127)				
Link Prob.	0.4146***	0.3764***	0.4408***				
	(0.0245)	(0.0406)	(0.0299)				
Enumeration Subdistrict (1906)	Yes	Yes	Yes				
Fam. Bpl. + Homestead	Yes	Yes	Yes				
Livestock + Ag.	Yes	Yes	Yes				
Observations	14,944	5,371	9,573				
R ²	0.09796	0.16115	0.11051				
Dependent variable mean	0.69279	0.65388	0.71461				

Switching to High Skill Services • Back

Dependent Variable: Model:	(1) 1906	(2)	Ln Farm Area (3) 021	(4)	(5) 931
Asinh Horses	0.0559***				
Asinh Milk Cows	(0.0049) -0.0004 (0.0051)				
Asinh Hogs	-0.0112***				
Asinh Cattle	(0.0035) 0.0234*** (0.0032)				
Asinh Sheep	0.0057				
Family Size	-0.0024	-0.0063***	-0.0044*	0.0030***	0.0012
Fam. Adult Males	(0.0017) 0.0271^{***} (0.0049)	0.0206*** (0.0028)	(0.0023) 0.0152^{**} (0.0070)	0.0202*** (0.0026)	(0.0019) 0.0131^{***} (0.0047)
Homestead	-0.3169***	-0.1730***	-0.1624***	-0.1699***	-0.1637***
Asinh Wheat	(0.0186) -0.0138 (0.1390)	(0.0072) 0.1437^{**} (0.0617)	(0.0181) -0.0287 (0.1968)	(0.0062) 0.0074 (0.0862)	(0.0139) 0.0635 (0.1766)
Asinh Oats	0.0756	-0.7318***	-0.6965**	-0.2634	-0.3276
Asinh Grass	(0.2470) -0.0049 (0.0152)	(0.1506) -0.2574 ^{***} (0.0599)	(0.3189) -0.1207^{*} (0.0681)	(0.1626) 0.0626 (0.0581)	(0.2926) 0.0454 (0.0558)
Asinh Flax	0.0050	0.0970	0.0754	-0.1193	-0.1052
Asinh Barley	(0.0450) -0.1012 (0.2248)	(0.0669) 0.7859*** (0.1405)	(0.0757) 0.8071*** (0.3037)	(0.0761) 0.2907** (0.1320)	(0.1003) 0.3371 (0.2523)
Employer	(0.2240)	0.0405***	-0.0096	0.0290***	0.0207
Employee		-0.2295*** (0.0149)	-0.2749*** (0.0336)	-0.2082*** (0.0111)	-0.2459*** (0.0160)
Log Income		(0.0143)	-0.0181*** (0.0068)	(0.0111)	-0.0233*** (0.0084)

Dependent Variable:		Farm Area				
Model:	(1)	(2)	(3)	(4)		
	Movers	On FF	Movers	On FF		
	1906	-1921	1906	-1931		
Farm Area (1906)	0.0395***	0.0883***	0.0295*	0.0863***		
	(0.0111)	(0.0112)	(0.0152)	(0.0160)		
Homestead (1906)	0.0440*	0.0150	-0.0392	-0.0042		
	(0.0233)	(0.0263)	(0.0322)	(0.0383)		
Homestead (1921)	-0.2108***	-0.1662***	. ,			
. ,	(0.0224)	(0.0243)				
Homestead (1931)	· · · ·	· · · ·	-0.1303***	-0.1251***		
			(0.0274)	(0.0370)		
Enum. Sub. (1921)	Yes	Yes				
Enum. Sub. (1921)			Yes	Yes		
Observations	6,079	7,203	4,517	4,541		
R ²	0.20421	0.21970	0.46946	0.43374		

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Dependent Variable:		Ln Farm Area					
Model:	(1)	(2)	(3)	(4)	(5)		
	3km	4km	5km	6km	7km		
$Early \times Close \times Year = 1931$	0.0226	0.0484*	0.0529*	0.0739*	0.1096**		
	(0.0259)	(0.0260)	(0.0304)	(0.0407)	(0.0540)		
$Early \times Close \times Year = 1921$	-0.0149	0.0106	0.0078	0.0225	0.0625		
	(0.0259)	(0.0257)	(0.0288)	(0.0386)	(0.0571)		
Early $ imes$ Close	-0.0216	-0.0340	-0.0133	-0.0064	-0.0399		
	(0.0223)	(0.0221)	(0.0243)	(0.0322)	(0.0457)		
Homestead	-0.2125***	-0.2135***	-0.2131***	-0.2131***	-0.2130* ^{**}		
	(0.0050)	(0.0050)	(0.0050)	(0.0050)	(0.0050)		
RR Dist in Year	0.0403***	0.0407***	0.0408***	0.0408***	0.0409***		
	(0.0035)	(0.0035)	(0.0035)	(0.0035)	(0.0035)		
Family Size	-0.0005	-0.0006	-0.0006	-0.0006	-0.0006		
	(0.0005)	(0.0005)	(0.0005)	(0.0005)	(0.0005)		
Fam. Adult Males	0.0044***	0.0045***	0.0045***	0.0045***	0.0046***		
	(0.0016)	(0.0016)	(0.0016)	(0.0016)	(0.0016)		
Other Terms	Yes	Yes	Yes	Yes	Yes		
School District	Yes	Yes	Yes	Yes	Yes		
Observations	439,027	439,027	439,027	439,027	439,027		
R ²	0.15431	0.15384	0.15382	0.15383	0.15378		

Clustered (Enum. Sub.) standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Dependent Variable:	Ln Farm Area					
Model:	(1)	(2)	(3)	(4)	(5)	
	1904	1905	1906	1907	1908	
$Early \times Close \times Year = 1931$	0.0720*	0.0675*	0.0529*	0.0610**	0.0343	
-	(0.0408)	(0.0347)	(0.0304)	(0.0311)	(0.0317)	
$Early \times Close \times Year = 1921$	-0.0117	0.0009	0.0078	0.0228	-0.0025	
	(0.0348)	(0.0318)	(0.0288)	(0.0289)	(0.0303)	
Early $ imes$ Close	0.0060	-0.0089	-0.0133	-0.0234	0.0128	
	(0.0286)	(0.0258)	(0.0243)	(0.0248)	(0.0274)	
Homestead	-0.2125***	-0.2129***	-0.2131***	-0.2132***	-0.2132***	
	(0.0050)	(0.0050)	(0.0050)	(0.0050)	(0.0050)	
RR Dist in Year	0.0420***	0.0414***	0.0408***	0.0406***	0.0407***	
	(0.0035)	(0.0035)	(0.0035)	(0.0035)	(0.0035)	
Family Size	-0.0007	-0.0006	-0.0006	-0.0005	-0.0005	
	(0.0005)	(0.0005)	(0.0005)	(0.0005)	(0.0005)	
Fam. Adult Males	0.0048***	0.0046***	0.0045***	0.0044***	0.0044***	
	(0.0016)	(0.0016)	(0.0016)	(0.0016)	(0.0016)	
Other Terms	Yes	Yes	Yes	Yes	Yes	
School District	Yes	Yes	Yes	Yes	Yes	
Observations	439,027	439,027	439,027	439,027	439,027	
R ²	0.15403	0.15387	0.15382	0.15385	0.15390	

Clustered (Enum. Sub.) standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

	Dependent Variable:	Ln Farm Area		
	Model.	Baseline	(2) Drop 1906	
	$Early \times Close \times Year = 1931$	0.0529^{*}	0.0459^{**}	
	$Early\timesClose$	-0.0133	-0.0045	
	$Early\timesClose\timesYear=1921$	0.0078	(0.0149)	
	Homestead	(0.0288) -0.2131***	-0.1850***	
	RR Dist in Year	(0.0050) 0.0408***	(0.0047) 0.0519^{***}	
	Family Sizo	(0.0035)	(0.0032)	
		(0.0005)	(0.0006)	
	Fam. Adult Males	0.0045^{***} (0.0016)	0.0068^{***} (0.0017)	
	Other Terms	Yes	Yes	
	School District	Yes	Yes	
	Observations R^2	439,027 0.15382	358,129 0.17134	

Clustered (Enum. Sub.) standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Why do Schools Open Sooner in Some Places?

- Rural common schools were constructed by local communities, who organized together.
- Goldin and Katz argue that smaller communities were more homogenous, had higher levels of social capital, and therefore constructed schools sooner (Goldin & Katz, 2008).
- Dippel and Ottinger makes a similar argument, that small decentralized school boards facilitated increased population heterogeneity (Dippel et al., 2020).
- Can test this by looking at the local determinants of school opening.
 - Look at the set of schools that opened between 1900-1912
 - Link schools to the characteristics of the people that lived nearby (in 1906 when observe locations).
- Standardize variables to compare, each variable is expressed in standard deviations.

	School Year Established (1) (2) (3)		
RR Distance 1899 (Log)	0.5537^{***}	0.5375^{***}	0.5328^{***}
School Distance 1899 (Log)	(0.1440) 0.2362^{*} (0.1363)	0.2338*	(0.1441) 0.2316^{*} (0.1360)
Local Children 1906 (Count)	-0.4225***	-0.4704*** (0.1201)	-0.4915*** (0.1211)
Local Households 1906 (Count)	-0.1476	-0.1502	-0.1467
Cattle 1906 (Count)	0.0799	0.0762	0.0783
Hogs 1906 (Count)	-0.2889***	-0.2603**	-0.2613**
Milk Cows 1906 (Count)	-0.2925** (0.1175)	-0.2647**	-0.2560**
Area Entirely Homestead (Indicator)	0.1021*	0.0809	0.0821
Birthplace HHI (Percentage)	0.1668***	(0.0570) 0.1691***	0.1568***
Religion HHI (Percentage)	(0.0596) 0.1901***	(0.0590) 0.1546**	0.1522**
Anglo-North American (Percentage)	(0.0653)	-0.3393***	-0.3130***
Methodist (Percentage)		(0.0666)	(0.0699) -0.1027
Presbyterian (Percentage)			(0.0624) -0.1120*
Lutheran (Percentage)			(0.0607) -0.1215* (0.0676)
Observations R^2	2,926 0.44815	2,926 0.45350	2,926 0.45483
Geographic Controls fixed effects	\checkmark	\checkmark	\checkmark

Abramitzky, Ran, Leah Platt Boustan, and Katherine Eriksson (Aug. 1, 2012). "Europe's Tired, Poor, Huddled Masses: Self-Selection and Economic Outcomes in the Age of Mass Migration". In: American Economic Review 102.5, pp. 1832-1856. ISSN: 0002-8282. DOI: 10.1257/aer.102.5.1832. URL: https://pubs.aeaweb.org/doi/10.1257/aer.102.5.1832 (visited on 09/04/2024). — (June 2014). "A Nation of Immigrants: Assimilation and Economic **Outcomes in the Age of Mass Migration".** In: Journal of Political Economy 122.3. pp. 467-506. ISSN: 0022-3808, 1537-534X. DOI: 10.1086/675805. URL: https://www.journals.uchicago.edu/doi/10.1086/675805 (visited on 01/22/2021). Abramitzky, Ran, Roy Mill, and Santiago Pérez (Apr. 2, 2020). "Linking Individuals across Historical Sources: A Fully Automated Approach*". In: Historical Methods: A Journal of Quantitative and Interdisciplinary History 53.2, pp. 94–111. ISSN: 0161-5440. DOI: 10.1080/01615440.2018.1543034. URL:

https://doi.org/10.1080/01615440.2018.1543034 (visited on 06/20/2024).

Abramitzky, Ran et al. (2024). "Finding John Smith: Using Extra Information for Historical Record Linkage". In.

Althoff, Lukas, Harriet Brookes Gray, and Hugo Reichardt (2025). **"America's Rise in Human Capital Mobility".** In.

Antonie, Luiza et al. (Apr. 1, 2014). **"Tracking People over Time in 19th Century Canada for Longitudinal Analysis".** In: *Machine Learning* 95.1, pp. 129–146. ISSN: 1573-0565. DOI: 10.1007/s10994-013-5421-0. URL:

https://doi.org/10.1007/s10994-013-5421-0 (visited on 06/20/2024).

- Antonie, Luiza et al. (Oct. 2020). "Selection Bias Encountered in the Systematic Linking of Historical Census Records". In: Social Science History 44.3, pp. 555–570. ISSN: 0145-5532, 1527-8034. DOI: 10.1017/ssh.2020.15. URL:
 - https://www.cambridge.org/core/journals/social-science-
 - ${\tt history/article/selection-bias-encountered-in-the-systematic-linking-interesting} and {\tt history/article/selection-bias-encounteresting} and {\tt history/article/s$
 - of-historical-census-records/C1C07635B494232D7489B5D35230DBE1 (visited on 05/30/2024).
- Bagagli, Sara (2023). Once Upon a Time in the (Canadian) West: Railroads, Location Fundamentals, and the Growth of Cities. Sara Bagagli. URL: https://sarabagagli.github.io/research/publication/ (visited on 03/21/2023).

- Bailey, Martha J. et al. (Dec. 2020). "How Well Do Automated Linking Methods Perform? Lessons from US Historical Data". In: Journal of Economic Literature 58.4, pp. 997–1044. ISSN: 0022-0515. DOI: 10.1257/jel.20191526. URL: https://www.aeaweb.org/articles?id=10.1257/jel.20191526 (visited on 05/06/2025).
- Buckles, Kasey et al. (Sept. 2023). Breakthroughs in Historical Record Linking
 Using Genealogy Data: The Census Tree Project. DOI: 10.3386/w31671. URL: https://www.nber.org/papers/w31671 (visited on 09/14/2023). Pre-published.
 Budi-Ors, Tomas (2023). "Rural-Urban Migration and Structural Change: A Reinterpretation". In.

Card, David, Ciprian Domnisoru, and Lowell Taylor (Apr. 1, 2022a). "The Intergenerational Transmission of Human Capital: Evidence from the Golden Age of Upward Mobility". In: Journal of Labor Economics 40.S1, S39–S95. ISSN: 0734-306X. 1537-5307. DOI: 10.1086/718417. URL: https://www.journals.uchicago.edu/doi/10.1086/718417 (visited on 01/06/2025). Card, David et al. (Sept. 2022b). The Impact of Female Teachers on Female Students' Lifetime Well-Being, w30430. Cambridge, MA: National Bureau of Economic Research, w30430, DOI: 10.3386/w30430, URL: http://www.nber.org/papers/w30430.pdf (visited on 01/09/2025). Caselli, Francesco and Wilbur John Coleman II (2001). "The U.S. Structural Transformation and Regional Convergence: A Reinterpretation". In: Journal of Political Economy 109.3, pp. 584–616. ISSN: 0022-3808. DOI: 10.1086/321015. URL: https://www.jstor.org/stable/10.1086/321015 (visited on 11/20/2023).

Dippel, Christian, Dustin Frye, and Bryan Leonard (2020). Property Rights without Transfer Rights: A Study of Indian Land Allotment. DOI: 10.3386/w27479. URL: https://www.nber.org/papers/w27479 (visited on 09/18/2022). Pre-published.
Duflo, Esther (Sept. 1, 2001). "Schooling and Labor Market Consequences of School Construction in Indonesia: Evidence from an Unusual Policy Experiment". In: American Economic Review 91.4, pp. 795–813. ISSN: 0002-8282. DOI: 10.1257/aer.91.4.795. URL:

https://pubs.aeaweb.org/doi/10.1257/aer.91.4.795 (visited on 06/27/2023).
Feigenbaum, James, Jonas Helgertz, and Joseph Price (2023). Examining the Role of Training Data for Supervised Methods of Automated Record Linkage:
Lessons for Best Practice in Economic History. DOI: 10.2139/ssrn.4669534.
URL: https://www.ssrn.com/abstract=4669534 (visited on 06/29/2024).
Pre-published.

Feigenbaum, James J (2016). "A Machine Learning Approach to Census Record Linking". In.

French, Jacob (2022). "Technological Change, Inequality, and Intergenerational Mobility: The Case of Early 20th Century Agriculture". In: p. 61. Gauthier, Jean-Francois, Teresa Molina, and Anant Nyshadham (2025). "Learning and Selection in the Sorting of Households Across Sectors". In. Goldin, Claudia (1998). "America's Graduation from High School: The Evolution and Spread of Secondary Schooling in the Twentieth Century". In: The Journal of Economic History 58.2, pp. 345–374. ISSN: 0022-0507. URL: https://www.jstor.org/stable/2566738 (visited on 11/22/2023). Goldin, Claudia and Lawrence F. Katz (1998). "The Origins of Technology-Skill **Complementarity".** In: The Quarterly Journal of Economics 113.3, pp. 693–732. ISSN: 0033-5533. URL: https://www.jstor.org/stable/2586871 (visited on 12/07/2023).

- Goldin, Claudia and Lawrence F. Katz (Sept. 2000). "Education and Income in the Early Twentieth Century: Evidence from the Prairies". In: The Journal of Economic History 60.3, pp. 782–818. ISSN: 1471-6372, 0022-0507. DOI: 10.1017/S0022050700025766. URL:
 - https://www.cambridge.org/core/journals/journal-of-economic-
 - history/article/education-and-income-in-the-early-twentieth-century-evidence-from-the-prairies/0F5357717F81B36ADFDB9B8DC0C0A848 (visited on 12/09/2023).
- (2008). The Race Between Education and Technology. Cambridge, UNITED STATES: Harvard University Press. ISBN: 978-0-674-03773-1. URL: http: //ebookcentral.proquest.com/lib/utoronto/detail.action?docID=3300082 (visited on 11/14/2024).

Government of Alberta (1912). "Annual Report of the Department of Education of the Province of Alberta.". In: Annual report of the Department of Education of the Province of Alberta.

Government of Manitoba (1911, 1912). Report of the Department of Education.
Helgertz, Jonas et al. (Jan. 2, 2022). "A New Strategy for Linking U.S. Historical Censuses: A Case Study for the IPUMS Multigenerational Longitudinal Panel". In: Historical Methods: A Journal of Quantitative and Interdisciplinary History 55.1, pp. 12–29. ISSN: 0161-5440. DOI: 10.1080/01615440.2021.1985027. URL: https://doi.org/10.1080/01615440.2021.1985027 (visited on 05/24/2024).
Lachanski, Michael S. (2024). The Elusive Rural U.S. Historical Educational Advantage: New Evidence for the 1881 to 1914 Cohorts.

Leonard, Bryan and Brian Kogelmann (2022). "Does Equality Persist? Evidence from the Homestead Act". In: Journal of Political Institutions and Political Economy 3.2, pp. 215-241. ISSN: 2689-4823, 2689-4815. DOI: 10.1561/113.00000059. URL: http://www.nowpublishers.com/article/Details/PIP-0059 (visited on 02/02/2023).

MacKinnon, Mary and Chris Minns (2009). "The Impact of School Provision on Pupil Attendance: Evidence From the Early 20th Century". In. Mattheis, Ross and Itzchak Tzachi Raz (2019). "There's No Such Thing As Free Land: The Homestead Act and Economic Development". In: p. 91. Nagy, Dávidkrisztián (Jan. 31, 2023). "Hinterlands, City Formation and Growth: **Evidence from the U.S. Westward Expansion**". In: The Review of Economic Studies, rdad008. ISSN: 0034-6527, 1467-937X. DOI: 10.1093/restud/rdad008. URL: https://academic.oup.com/restud/advancearticle/doi/10.1093/restud/rdad008/7017614 (visited on 03/20/2023).

- Porzio, Tommaso, Federico Rossi, and Gabriella Santangelo (Aug. 2022). "The Human Side of Structural Transformation". In: American Economic Review 112.8, pp. 2774-2814. ISSN: 0002-8282. DOI: 10.1257/aer.20201157. URL: https://www.aeaweb.org/articles?id=10.1257/aer.20201157 (visited on 11/20/2023).
- Price, Joseph et al. (Apr. 1, 2021). "Combining Family History and Machine Learning to Link Historical Records: The Census Tree Data Set". In:

Explorations in Economic History 80, p. 101391. ISSN: 0014-4983. DOI:

10.1016/j.eeh.2021.101391. URL:

https://www.sciencedirect.com/science/article/pii/S0014498321000024 (visited on 08/31/2023).

Saskatchewan Department of Education (1906, 1907, 1908, 1910, 1911, 1912, 1914).

Annual Report of the Saskatchewan Department of Education.

Schaede, Ursina (2021). The Long Run Effects of Funding for Public Education: Evidence from Land Grants. Ursina Schaede. URL:

https://ursinaschaede.github.io/research/ (visited on 03/22/2023).

Smith, Cory (2022). "Land Concentration and Long-run Development in the Frontier United States". In.